3 and 4 .Determinants and Matrices
easy

निम्नलिखित को परिकलित कीजिए

: $\left[ {\begin{array}{*{20}{l}}
  {{{\cos }^2}x}&{{{\sin }^2}x} \\ 
  {{{\sin }^2}x}&{{{\cos }^2}x} 
\end{array}} \right] + $ $\left[ {\begin{array}{*{20}{c}}
  {{{\sin }^2}x}&{{{\cos }^2}x} \\ 
  {{{\cos }^2}x}&{{{\sin }^2}x} 
\end{array}} \right]$

A

$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

B

$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

C

$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

D

$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

Solution

$\left[\begin{array}{cc}\cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x\end{array}\right]+\left[\begin{array}{cc}\sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x\end{array}\right]$

$=\left[\begin{array}{ll}\cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\ \sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x\end{array}\right]$

$=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$                  $(\because $           $\cos ^{2} x=1)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.